IEEE Spectrum调查:AI 的 6 种最坏情况

对于人类社会,人工智能(AI)带来的最大威胁是什么?好莱坞科幻电影的“想象”提供了答案:它逐渐进化,获得人类思考能力,然后变成霸主,奴役或毁灭人类。也有些观点认为:在AI不知不觉杀死所有人之前,会存在许多危险情形。

访问:

无影云桌面:四核8G云上“超级电脑”1元抢购

2022年1月份,IEEE Spectrum访谈了多位技术专家,列举出了当前6种AI危险事例,这些危险比科幻电影的描述“风平浪静”,却同样具有威胁性,如果放任自由会有意想不到的后果。它们分别是:虚拟定义现实、AI军备竞赛、隐私透明、斯金纳箱现象、AI偏见以及过度担忧AI影响。

1
当虚拟定义现实……

当人类无法区分数字世界中的真实与虚假时,会发生什么?

设想这样一个场景:AI已经拥有完美生成的能力,利用先进的机器学习工具生成的图像、视频、音频和文本已经“以假乱真”。但如果决策者陷入假信息旋涡,并做出决断,不可避免会导致危机。当上升到国家高度,甚至会发动战争。乔治敦大学的研究员安德鲁•罗恩(Andrew Lohn)认为:AI已经能够产生大量以假乱真的信息。而且AI的特点是“随着大量信息的生成,系统会不断与真实信息进行对比,并且升级生成能力”。

AI信息生成技术也被称为“DeepFake”,其带来的恶作剧已经造成了某些影响。例如去年5月份,一些欧洲高级议员收到了一些“俄罗斯反对派人物”的视频会议邀请,还煞有其事地讨论了克里米亚问题之类的政治事务,结果发现在这些所谓的“俄罗斯反对派人物”都是别人用Deepfake换脸假冒的。这些受骗者包括拉脱维亚议会外交事务委员会主席Rihards Kols,以及来自爱沙尼亚和立陶宛的议员……

2
一场危险的逐底竞赛

当谈到AI和国家安全时,开发速度既是重点也是问题所在。由于AI系统能为用户带来速度优势,所以最先开发军事应用的国家将获得战略优势。但是,一味追求速度可能会牺牲哪些设计原则呢?

首先,是“质量”问题。例如黑客会利用系统中微小的缺陷。乔治敦大学的海伦·托纳(Helen Toner)表明:“从一个无伤大雅单点故障开始,然后所有通信失灵,人们恐慌,经济活动陷入停滞;随后持续的信息缺乏,再加上其他错误计算,可能导致局势失控。”

另一方面,瑞典的斯德哥尔摩国际和平研究所高级研究员文森特•布拉南警告可能发生重大灾难:“大国为了赢得先发制人的优势而‘偷工减料’,如果一个国家将开发速度置于安全、测试或人为监督之上,那么这将是一场危险的竞逐。”例如,为了获得速度优势,国家安全领导人可能会倾向于授权指挥和控制决策,取消黑盒机器学习模型的人为监督。想象一下,如果自动发射导弹防御系统处于无人监督的环境下会发生什么?

3
隐私和自由意志的终结

使用数字技术的过程中产生了大量的电子数据,例如发送电子邮件,阅读文本,下载,购买,发帖等等。当允许公司和政府访问这些数据时,也意味着赋予工具监视和控制我们的权限。

随着面部识别、生物识别、基因组数据分析等技术兴起。安德鲁•罗恩担心:“我们有时候并没有意识到大数据跟踪和监视技术的不断发展,会使我们进入了未知的危险领域。”数据一旦被收集和分析,其作用就会远远超出跟踪和监视的功能,例如AI的预测性控制功能。今天,AI系统可以预测我们将购买哪些产品,我们将观看哪些娱乐节目,以及我们将点击哪些链接。当这些平台比我们自己更了解我们时,我们可能不会注意到这种微小的变化,但它剥夺了我们的自由意志并使我们受到外部力量的控制。


4
人类的斯金纳箱实验

曾经在20世纪70年代,有位叫做Walter Mischel的研究专家,在美国斯坦福大学附属幼儿园基地内进行了著名的“棉花糖”实验,又称——延迟满足”实验。

而这个实验的观察数据,以及后期对这些孩子的追踪观察说明:

那些延迟满足能力强的孩子,自我控制能力也就越强,可以在没有外界监督的情况下,自主性的控制调节自身行为,在某一个任务完成程度上,要更胜一筹。

当前,具备延迟满足能力孩子也会屈服于AI算法给出的诱惑。

进一步,社交媒体用户已经成为实验室中的老鼠,生活在斯金纳盒子里。这些用户沉迷于手机,被迫牺牲更多宝贵的时间和注意力在数字平台上。

海伦·托纳认为:“算法经过优化,可使用户尽可能长时间地‘留’在平台上。”著名作家马尔科姆·默多克解释道:“通过以喜欢,评论和关注的形式提供奖励,算法会缩短我们大脑的工作方式,让我们不自觉地去参与下一个。”

为了最大化广告利润,公司把我们的注意力从工作、家人、朋友,责任甚至爱好上转移。更糟糕的是,如果推送内容质量下降,用户会痛苦和暴躁。海伦·托纳警告:“我们在平台上花费的时间越多,花在追求积极、高效和充实生活上的时间就越少。”

5
人工智能设计的“暴政”

把更多的日常生活交给人工智能机器是有问题的。即使出于最好的意图,AI系统的设计,包括训练数据和数学模型,也反映了编程人员的“狭隘”经验和兴趣。

当前,许多AI系统没有考虑到不同人的不同经历和特征,AI模型的训练往往基于有偏见的观点和数据,无法充足考虑每个人的独特需求来解决问题,因此此类系统在人类社会中缺乏一致性。甚至在AI大规模应用之前,对日常生活中常见物品的设计往往也是迎合了特定类型的人。例如,研究表明,汽车、包括手机在内的手持工具,甚至办公室环境中的温度设置都是为适合中等身材的男性而设置的,这使得包括女性在内的各种身材和体型的人处于劣势,有时甚至会对他们生活造成危害。

当不属于有偏见规范的个人被忽视、边缘化和排斥时,AI就会变成卡夫卡式的守门人:拒绝提供客户服务、工作、医疗等服务,这些设计决策的目的约束人们,而不是将他们从日常事务中解放出来。此外,这些选择还可以将一些最恶劣的偏见转化为种族主义和性别歧视,造成严重缺陷和有偏见的判决结果。

6
对人工智能的恐惧剥夺了人类的利益

构建机器智能的过程最终以数学为中心,正如默多克所言:“如果我们不注意的话,线性代数会做非常疯狂而强大的事情。”但是,如果人们变得极度害怕AI,并且督促政府通过剥夺“AI便利”方式对其进行监管,那会怎样呢?

毕竟AI已经帮助人类实现了重大科学进展,例如DeepMind的AlphaFold模型通过氨基酸序列精确预测蛋白质折叠结构方面取得了重大突破,使科学家能够识别98.5%的人类蛋白质的结构,这一里程碑将为生命科学的快速发展提供坚实的基础。考虑到这些AI好处,政府为防范“AI作恶”而采取的下意识监管行动也可能适得其反,并产生它们自己意想不到的负面后果,在这些后果中,我们对这项巨大技术的威力感到如此恐惧,以至于我们拒绝利用它为全世界带来实际好处。

参考链接

Via https://spectrum.ieee.org/ai-worst-case-scenarios

对文章打分

IEEE Spectrum调查:AI 的 6 种最坏情况

2 (20%)
已有 条意见

    最新资讯

    加载中...

    今日最热

    加载中...

    热门评论

      Top 10

      招聘


      Advertisment ad adsense googles cpro.baidu.com
      created by ceallan